Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-982144

RESUMO

OBJECTIVE@#To explore the chronic injury and its possible mechanism of ionizing radiation on multipotent hematopoietic progenitor cells (MPPs) by determining the related indicators of MPPs in bone marrow of mice post-radiation.@*METHODS@#Sixteen C57BL/6 adult mice were randomly divided into normal control and irradiation groups, 8 mice in each group. The mice in irradiation group were exposed to 6 Gy X-ray. The proportion of bone marrow MPPs, their apoptosis and proliferation 2 months after irradiation were detected by flow cytometry. Mitochondrial activity and levels of reactive oxygen species (ROS) in each MPPs population were detected by Mitotracker Red and DCFDA probes, and the senescent state of MPPs in the bone marrow was analyzed.@*RESULTS@#Ionizing radiation could reduce the proportion of MPPs in mouse bone marrow. The proportions and numbers of MPP1, MPP3 and MPP4 in the bone marrow were significantly decreased after whole-body irradiation with 6 Gy X-ray (P<0.05). In addition, radiation significantly reduced the colony-forming capacity of MPPs in bone marrow (P<0.05), the proportions of apoptotic cells in the MPP1 and MPP4 cell populations increased significantly in the bone marrow (P<0.05). The activity of mitochondria was significantly reduced in the bone marrow MPP2, MPP3 and MPP4 cell populations compared with that of the control group (P<0.05). It was also found that the radiation could significantly increase the ROS levels of MPPs in bone marrow, and the content of ROS in the MPP2, MPP3 and MPP4 cell population of the bone marrow was significantly increased(P<0.05). The senescent cells ratios of MPP1, MPP3 and MPP4 cells in the bone marrow after irradiation were significantly higher than those in the control group (P<0.05).@*CONCLUSION@#Ionizing radiation can cause chronic MPPs damage in mice, which is closely associated with persistent oxidative stress, cells apoptosis, and cellular senescence.


Assuntos
Camundongos , Animais , Medula Óssea , Espécies Reativas de Oxigênio , Camundongos Endogâmicos C57BL , Células-Tronco Hematopoéticas , Irradiação Corporal Total , Radiação Ionizante , Células da Medula Óssea
2.
Indian J Pharmacol ; 45(2): 174-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23716895

RESUMO

OBJECTIVE: To investigate the protective effects of rhein on IgA nephropathy (IgAN) in the rat model. MATERIALS AND METHODS: Twenty-eight female sprague dawley rats were divided randomly into four groups, namely control, IgAN, rhein-prevented and rhein-treated. The pathologic changes on renal tissue were observed by the H and E, staining and the amount of urinary red blood cells and 24-h urinary protein excretion were measured. The glomerular deposition of immune globulin A (IgA) was measured by immunofluorescence staining. Fibronectin (FN) and α-smooth muscle actin (α-SMA) expression on renal tissue were measured via immunohistochemistry. RESULTS: The model of IgAN was established according to Bovine serum albumin-Lipopolysaccharide-Carbon tetrachloride protocol, which was evidenced by histological structural lesions of glomeruli, IgA deposition and urinary measurement. Histological examination of kidney sections from both rhein-prevented group and rhein-treated group showed that glomerular hypertrophy, mesangial expansion, excessive extracellular matrix, and renal capsule dilation were markedly ameliorated compared with IgAN group. Moreover, rhein treatment significantly reduced IgA deposition in glomerulus, the volume of urinary red blood cells and 24-h urinary protein excretion. More importantly, increased FN expression in IgAN was back to normal level in rhein-prevented and rhein-treated group, which was along with the reduction of α-SMA expression in renal tissues. CONCLUSIONS: These findings indicate that rhein prevents the development of glomerulosclerosis and halts the progression of IgAN via inhibition of FN and α-SMA expression.


Assuntos
Antraquinonas/uso terapêutico , Modelos Animais de Doenças , Inibidores Enzimáticos/uso terapêutico , Fibronectinas/antagonistas & inibidores , Glomerulonefrite por IGA/prevenção & controle , Actinas/metabolismo , Animais , Feminino , Glomerulonefrite por IGA/metabolismo , Glomérulos Renais/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...